
 CHAPTER 7

Symbolic and Source Level Debugging
 7.1 Introduction
 7.2 Preparing for Symbolic or Source Debugging
 7.2.1 Preparing for Symbolic Debugging Only
 7.2.2 Preparing for Symbolic and Source
 Level Debugging
 7.3 Reserving Memory for Symbols and Source File
 7.4 Loading Programs and Symbol Files
 7.5 Debugging With Symbols
 7.6 Debugging With Source

177

7.1 Introduction

Soft-ICE can load programs, symbol tables and source files for enhanced debugging.
Symbolic debugging allows you to set break points and reference variables with symbol
names rather than specifying numeric addresses. Source level debugging allows you to
step through your program at the source code level rather than assembly code level.

Symbol and source line number information is extracted from the link map file. The link
map must be compatible with Microsoft's linker version 3.60 or greater.

Symbols and source files reside in extended memory. You must have sufficient extended
memory for the symbols and source files. Source files are not paged from the disk as in
many debuggers. This allows Soft-ICE to provide complete system debugging in source
level, You can debug T&SR's interrupt routines and other systems level code at the
source level.

Note:
You cannot use symbolic or source level debugging unless Soft-ICE has been loaded as
a device driver in CONFIG.SYS.

7.2 Preparing for Symbolic or Source Debugging

Before debugging a program with symbols or source you must create a symbol file. This
is a binary file that contains symbol and line number information in a format that Soft-
ICE can understand. This file is created with the utility MSYM.EXE. MSYM.EXE reads in
your link map to create a symbol file with the extension (.SYM).

178

7.2.1 Preparing for Symbolic Debugging Only

To prepare a program for symbolic debugging only, you must do the following steps:
 1. Compile or assemble your program.
 2. Link your program with the proper switches to create
 a .MAP file that contains a list of public symbols.
 If you are using Microsoft's linker, the /MA switch
 is the proper switch to use. This .MAP file must be
 identical to the .MAP file produced by Microsoft's
 linker, version 3.60 or greater.
 3. Create a.SYM file by running MSYM.EXE. The
 syntax for using MSYM.EXE is:
 MSYM program-name [.extension]
 If the extension is not supplied MSYM assumes the
 extension is.MAP. MSYM reads in a map file as in
 and writes out a symbol file as output. The symbol
 has the name program-name.SYM.

Note:
Before compiling or assembling your program you may want to make some additional
symbols public. Only public symbols are supported with Soft-ICE symbolic debugging.
The way to make a variable or a label public varies, depending upon which language
you are using.

In 8086 assembly language, simply use the PUBLIC directive followed by the locally
defined symbols you wish to make public. For example:

 PUBLIC FOO, LOOP1, STATUS

In C language, all procedure names and static variables are defined outside a block are
public.

179

For other languages, refer to your language manual for details.

7.2.2 Preparing for Symbolic and Source Level Debugging

To prepare a program for both symbolic and source debugging, you must do the
following steps:
 1. Compile or assemble each module that you wish
 debug at the source level with the appropriate
 switch to put line number information into the
 object files. With Microsoft languages you can use
 either the /Zi or the /Zd switches. You may not
 want to do this with all files, because the combined
 file sizes of the symbol file and all the source files
 compiled with these switches must fit into the

 amount of extended memory you have reserved
 with the /SYM loading switch in CONFIG.SYS.
 2. Link your program with the proper switches to create
 a.MAP file that contains source line numbers and
 a list of public symbols. If you are using
 Microsoft's linker, the /LI and /MA switches are
 the proper switches to use. This .MAP file must be
 identical to the.MAP file produced by Microsoft's
 linker, version 3.60 or greater.
 3. Create a.SYM file by running MSYM.EXE. The
 syntax for using MSYM.EXE is:
 MSYM program-name [.extension]
 If the extension is not supplied MSYM assumes the
 extension is.MAP. MSYM reads in a map file as input
 and writes out a symbol file as output. The symbol file
 has the name program-name.SYM.

180

7.3 Reserving Memory for Symbols and Source Files

Before loading programs, symbol files and source files you must reserve extended
memory for them. Extended memory is reserved when you load Soft-ICE in CONFIG.SYS.
Before reserving extended memory you may want to add up the file sizes of the .SYM
file and all of the source files that you want to load. You must reserve at least this much
extended memory.
You must use the /SYM loading switch when loading S-ICE.EXE. A sample line in
CONFIG.SYS for loading Soft-ICE and reserving space for symbols and source files is:

 DEVICE = S-ICE.EXE /SYM 1024

This example loads Soft-ICE into extended memory and reserves 1 megabyte of
memory for symbols and source files. See section 6.3 (Loading Soft-ICE as a Loadable
Device Driver) for more details on reserving memory.

7.4 Loading Programs and Symbol Files

The Soft-ICE utility LDR.EXE is used for loading programs, symbol files and source files.
For symbolically debugging application programs and T&SR programs you will typically
use LDR.EXE to load the program, symbols and source files in one step. For debugging
loadable device drivers, ROMs and other system components you will typically use
LDR.EXE to load the symbol file and source files only.
The syntax for LDR.EXE is:

LDR program-name | program-name.SYM |
 program-name.extension

181

7.4.1 Loading Program, Symbols and Source

To load your program, symbols and source files in one step, you must use LDR.EXE in
the form:

 LDR program-name

Notice that program-name does not have a file extension. If no file extension is
supplied, then LDR.EXE will do the following:
 1. Load program-name.SYM into extended memory
 2. Load source files into extended memory. This step
 is done only if source records exist in the .SYM file.
 3. Load program-name.EXE into memory at the
 location it would have loaded if it had been loaded
 directly from the DOS prompt.
 4. Bring up Soft-ICE with the instruction pointer at
 first instruction of your program. If it is a C
 program and source is loaded for the file
 containing , _MAIN, then the source for that file
 will be visible in the code window.

7.4.2 Loading Only Symbols and Source Files

If you wish to load only symbols and source files (for debugging a loadable device driver
for example) you must use LDR.EXE in the form:

 LDR program-name.SYM

Notice that the.SYM extension is specified. This will load the .SYM file and source files
into extended memory. When symbols are loaded by this method your program or
device driver symbols are assumed to be referenced from 0:0. Since this is rarely the
case you will need to use the Soft-ICE command SYMLOC to locate the symbols. See

182

the description of the SYMLOC command in section 5.10 for a complete description. An
example of loading a symbol file called DRIVER.SYM is:

 LDR DRIVER.SYM

7.4.3 Loading a Program With No Symbols or Source

To load a program file without loading the associated symbol file you must use LDR.EXE

in the form:

 LDR program-name.extension

Notice that the file extension is present. Typically the file extension will be.EXE or.COM.
When a file extension specified LDR.EXE will load the program and bring up Soft-ICE
with the instruction pointer at the first instruction of the program. An example of
loading a program with symbols and source is:

 LDR TEST.EXE

Notes:
LDR.EXE saves a copy of the interrupt vector table automatically when it loads your
program. This is equivalent to doing a VECS S command. If you are going to exit your
program before it runs to completion, you can do an EXIT R to exit the program and
restore the interrupt vector table.

Using LDR.EXE to load only the program-name.EXE is often useful for restarting your
program while in the middle of a source level debugging session. To restart, the EXIT R
command to abort the current session. Then use LDR.EXE to reload your.EXE file. The
symbols: source do not have to be loaded since they remain in extended memory.

183

If LDR.EXE gives you the message "Out of space loading symbol information", this
means that you did not reserve enough extended memory with the /SYM loading switch
in CONFIG.SYS.

If LDR.EXE does not find your source files on the same directory as the program you are
loading, LDR.EXE will prompt you for the path names where it can find the source files.
If you have source files on several directories or are loading a program frequently this
becomes cumbersome. You can eliminate the need for prompting by using the DOS
environment variable SRC. LDR.EXE uses this environment variable to find source files
before prompting the user. The syntax for setting the environment variable from the
DOS prompt is:

 SET SRC = directory;directory;...;directory

Each of the specified directories will be searched before the user is prompted.

Limitations:
Soft-ICE supports symbols for only one program at a time. If you load a new .SYM file,
the existing one is overwritten.
Soft-ICE does not follow overlays or Microsoft Windows segment movement.
Soft-ICE recognizes public symbols and line numbers only. It does not support local
variables.

7.5 Debugging With Symbols

After you have loaded your program and.SYM file you can begin debugging your
program symbolically. In general a symbol can be used in any command in place of an
address.

184

Symbols are also used by several Soft-ICE commands when addresses are displayed.
For example, the U command displays symbol names of labels and procedures as it
encounters them.
There are two commands that are helpful when you are symbolically debugging:
 * SYM -- Use the SYM command to get a listing of
 symbol names and values, or to change the value
 a symbol.
 * SYMLOC -- Use the SYMLOC command to
 relocate the base of all of your symbols. You
 would need to use the SYMLOC command when:
 1. Loading symbols for a loadable device driver
 2. Loading symbols for a T&SR that has already
 been loaded
 3. Your program moves itself to a location other
 than its original location.
See section 5. 10 for a complete description of these commands.

7.6 Debugging With Source

When source files are loaded, Soft-ICE allows you to view and step through your source
code as you are debugging. Soft-ICE offers two different modes of source level
debugging: mixed mode and source mode. Use the SRC command to switch between
modes.
Mixed mode shows source lines and the assembly language produced by those source
lines intermixed on the display. Mixed mode is useful when you must debug at the
assembly level, but use the source lines for reference. Mixed mode is allowed whether
the code window visible or not.

185

Source mode strictly shows source lines on the display. Source level debugging requires
the code window to be visible.

7.6.1 Using Line Numbers

Line numbers can be used in place of addresses in several commands. To differentiate a
line number from an actual address, place a . (period) in front of the number. For

example, to set an execution break point at source line 45 type:

 BPX .450

7.6.2 Using Source Mode in the Code Window

The code window must be visible to enter source mode. If not visible, use the WC
command to make it visible. Once you are in source mode you can use Soft-ICE
commands switch to a different source file, view source at any location in the file, scroll
through the file, search for strings in the file, and set break points in the file. For a
complete description of the following commands see their command descriptions in
chapters 4 and 5. The following list is a brief overview of commands that are useful
when debugging source code:
 * Make the code window visible (if it is not already)
 with the WC command.
 * Toggle between source, mixed, and code modes
 with the SRC command. To toggle modes enter:
 SRC

186

 * Place a source file in the code window (if it is n@
 already) with the FILE command. For example
 change from the current file to file MAIN.C enter:

 FILE MAIN.C

 * Display source at a specific location within the
 source file with the U command. To change the
 view to a specific line number or memory address
 use the U command. You can specify actual
 addresses or line numbers as a parameter to the
 command. For example, to view source in the
 code window starting at source line 450 enter:

 U .450

 * Locate the current instruction in the code wind@
 with the . (period) command.
 * Search for a specific character string with the S@
 command. For example, to search for the string
 "Hello World" starting at line 100 in the current
 source file enter:

 SS 100 "Hello World"

 * Move the cursor to the code window (if it is not
 already) with the EC command.
 * Scroll the source with the keys up, down,
 PaqeUp, PageDn.
 * Set point-and-shoot break points with the BPX
 command. Simply place the cursor on the source
 line that you wish to break on, then enter:

 BPX

 187

Page 188 is blank

 188

